Development of highly efficient supramolecular CO2 reduction photocatalysts with high turnover frequency and durability.
نویسندگان
چکیده
New Ru(II)-Re(I) supramolecular photocatalysts with a rhenium(I) biscarbonyl complex as a catalyst unit were synthesized. They photocatalyzed CO2 reduction to CO using a wide-range of visible light, and their photocatalytic abilities were strongly affected by the phosphorus ligands on the Re site. Especially, Ru-Re(FPh), with two P(p-FPh)3 ligands, exhibited tremendous photocatalytic properties, i.e. TN(CO) = 207 and phi(CO) = 0.15, and, in addition, this is one of the fastest-operating photocatalysts for CO2 reduction to CO, with TF(CO) = 281 h(-1). We also clarified a balance of transferred electrons in this photocatalytic reaction and found that the two electrons necessary for CO formation were provided by two sequential reductive quenching processes of the excited Ru photosensitizer unit by the reductant BNAH.
منابع مشابه
Supramolecular photocatalysts constructed with a photosensitizer unit with two tridentate ligands for CO2 reduction.
New supramolecular photocatalysts comprising an asymmetric bis-tridentate Ru(ii) complex that functions as a photosensitizer and a Ru(ii) carbonyl complex as the catalyst were designed. The complexes photocatalyzed the reduction of CO2 to CO or formic acid with high selectivity. The product distribution depended on the catalyst unit. CO and formic acid were the main products when using [Ru(BL)(...
متن کاملPhotocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes.
Previously undescribed supramolecules constructed with various ratios of two kinds of Ru(II) complexes-a photosensitizer and a catalyst-were synthesized. These complexes can photocatalyze the reduction of CO(2) to formic acid with high selectivity and durability using a wide range of wavelengths of visible light and NADH model compounds as electron donors in a mixed solution of dimethylformamid...
متن کاملPhotocatalytic Reduction of CO2 to Formaldehyde: Role of Heterogeneous Photocatalytic Reactions in Origin of Life Hypothesis
Photocatalytic reduction of carbon dioxide to formaldehyde was investigated on four semiconductor photocatalysts (FeS, FeS/FeS2, NiO and TiO2). The reaction was carried out in continues flow of CO2 gas bubbled into the reactor. Semiconductor photocatalysts were characterized by X-Ray diffraction (XRD) and Diffuse Reflectance Spectroscopic (DRS) methods. Sulfide ion was used as hole scavenger. T...
متن کاملPhotochemical and electrochemical catalytic reduction of CO2 with NHC-containing dicarbonyl rhenium(i) bipyridine complexes.
The electrochemical and photochemical catalytic reductions of CO2 using N,O and N,S-NHC-containing dicarbonyl rhenium(i) bipyridine complexes have been investigated. By replacing the carbonyl ligand in tricarbonyl rhenium(i) complexes with a weaker π-accepting ligand, the characteristic MLCT transitions shifted to lower energy. This makes photocatalysts capable of harvesting low-energy visible ...
متن کاملPhotocatalytic Reduction of CO2 to Formaldehyde: Role of Heterogeneous Photocatalytic Reactions in Origin of Life Hypothesis
Photocatalytic reduction of carbon dioxide to formaldehyde was investigated on four semiconductor photocatalysts (FeS, FeS/FeS2, NiO and TiO2). The reaction was carried out in continues flow of CO2 gas bubbled into the reactor. Semiconductor photocatalysts were characterized by X-Ray diffraction (XRD) and Diffuse Reflectance Spectroscopic (DRS) methods. Sulfide ion was used as hole scavenger. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Faraday discussions
دوره 155 شماره
صفحات -
تاریخ انتشار 2012